

Creating the Calibrators

- 1) Create a solution of 10ml water and 18.016mg of glucose in a conical tube. This will be known as solution A
- 2) Create a solution of 10ml water and 18.016mg of fructose in a conical tube. This will be known as solution B.
- 3) Create a solution of 100ul of solution A and 900ul of water in an Eppendorf tube. This will give us a 1mM Glucose solution known as solution A'.
- 4) Create a solution of 100ul of solution B and 900ul of water in an Eppendorf tube. This will give us a 1mM Fructose solution known as solution B'.
- 5) Mix 1000ul of A' and 1000ul of B' together. This will give us a 2ml solution of 500uM G/F, known as solution C in an Eppendorf tube.
- 6) Mix 1000ul of solution C and 1000ul of water, making a 2ml 250uM G/F solution known as solution D in an Eppendorf tube.
- 7) Mix 1000ul of solution D and 1000ul of water, making a 2ml 125uM G/F solution known as solution E in an Eppendorf tube.
- 8) Mix 1000ul of solution E and 1000ul of water, making a 2ml 62.5uM G/F solution known as solution F in an Eppendorf tube.
- 9) Mix 1000ul of solution F and 1000ul of water, making a 2ml 31.25uM G/F solution known as solution G in an Eppendorf tube.
- 10) Mix 1000ul of solution G and 1000ul of water, making a 2ml 15.625uM G/F solution known as solution H in an Eppendorf tube.

Protocol

- 1) Gather the Amylosucrase and .1M Sucrose from a freezer of -20C
- 2) In Separate Eppendorf tubes:
 - 50ul of enzyme + 50ul of .1M sucrose creating a solution of .25mg/ml
 - 30ul of enzyme + 90ul of .1M sucrose creating a solution of .125mg/mlThese will be the master solutions.
- 3) Incubate both solutions in 37C for 20 minutes
- 4) Incubate both solutions in 100C for 10 minutes
- 5) Make the following solutions in microfuge tubes:
 - 25ul .25 master solution + 25ul of water (2x dilution)
 - 25ul .125 master solution + 25ul of water (2x dilution)

-10ul .25 master solution +40ul of water (5x dilution)

-10ul .125 master solution + 40ul of water (5x dilution)

6) Create Calibrators of 500uM, 250uM, 125uM, 62.5uM, 31.25uM, and 15.6uM glucose/fructose and a blank of deionized water

7) Add the samples, master solutions, calibrators, and .1M sucrose in water into a 96 well plate in the arrangement shown below. Apply 10ul per well

	1	2	3	4	5	6	7	8	9	10	11	12
A	.25 Master Solution	.25 Master Solution	.25 Master Solution	.25 Master Solution	.125 Master Solution	.125 Master Solution	.125 Master Solution	.125 Master Solution	.1M Suc	500uM	500uM	500uM
B	.25 2x	.25 2x	.25 2x	.25 2x	.125 2x	.125 2x	.125 2x	.125 2x	.1M Suc	250uM	250uM	250uM
C	.25 5x	.25 5x	.25 5x	.25 5x	.125 5x	.125 5x	.125 5x	.125 5x	.1M Suc	125uM	125uM	125uM
D									.1M Suc	62.5uM	62.5uM	62.5uM
E										31.25uM	31.25uM	31.25uM
F										15.6uM	15.6uM	15.6uM
G										Blk	Blk	Blk
H												

8) Using the appropriate multi-pipettes, add 210ul of distilled water, 10ul of solution 1 and 10ul of solution 2 using separate 50ml reservoirs

9) Mix with pipettes and incubate at room temp for 3 minutes

10) Read absorbance using a plate reader at 340 nm

11) Using the appropriate multi-pipettes, Add 2ul of suspension 3 from a 50ml reservoir

12) Mix with pipettes and incubate at room temp for 5 minutes.

13) Read absorbance at 340 nm using a plate reader. If significant difference is noted in between the same samples, re-read every 2 minutes until difference becomes insignificant.

14) Using the appropriate multi-pipette, add 2ul of suspension 4 from a 50 ml reservoir

15) Mix using pipettes and incubate at room temp for 10 minutes

16) Read absorbance using a plate reader at 340 nm

17) Dispose of the plate and materials

Analysis

- 1) Export the plate readings to MS Excel
- 2) Find the average values of the blank absorbances for each reading
- 3) Subtract the average blank absorbance for the second reading by the average blank absorbance for the first reading. This will be the noise value for glucose.
- 4) Subtract the average blank absorbance for the third reading by the average blank absorbance for the second reading. This will be the noise value for fructose.
- 5) For each well, subtract the second reading by the first reading, then subtract by the noise value for glucose to get the absorbance values for glucose
- 6) For each well, subtract the third reading by the second reading, then subtract by the noise value for fructose to get the absorbance values for fructose
- 7) Plot a calibration curve (at least 5 points) with a line of best fit (absorbance in x-axis, concentration in y-axis). R-squared value ideally in between .98 & .99
- 8) Use the line of best fit equation to convert each absorbance value into a concentration